

MIDTERM EXAM

Answer all questions in the space provided. Time allowed: 50 Minutes Total points: 100

OPEN BOOK EXAM

Assume: $\beta \rightarrow \infty$ $V_{T}=26mV$

de Sy Bi KAM DEOTIOCE U

Above figure shows an IC- voltage reference supply produced by three transistors.

- a) If $V_{cc} = 10V$ nominal, and the standing current through Q_1 to Q_3 is made 5 times the load current I_{load} , what is the saturation current I_S for each device if $V_{\text{REF}} = 2V$ nominal? What is the value of R_{S} ?
 - $I_{load} = \frac{2}{20K} = 0.1 \text{ mA}$ $I_Q = 0.5 \text{ mA}$ $I_{RS} = \frac{10-2}{R_S} = 0.6 \text{ mA}$ $R_S = 13.3 \text{ K1}$ $I_{Q} = I_{S} e^{\frac{2}{7}} \frac{.5_{MA}}{e^{\frac{.666}{.026}}} = I_{S} = .5}{I_{.33 \times 10^{11}}} = 3.76 \times 10^{-13} MA$

b) If V cc changes by \pm 5V from its nominal value, by how much does V REF VREF 2 contant change <u>approximately</u>?

LIKE 3 DIODES
$$ID(5) = \frac{15-2}{13.3 \text{ K}} = \frac{123}{13} \text{ Increase}$$

FIND NEW CURRENT THRU DIDDES, USE $JV = 3 \ln(3)$
 $V_{+} \ln \frac{10}{15} = V$
 $V_{+} \ln \frac{10}{15} = \frac{10-2}{15.3 \text{ K}} = .6 \text{ mA}$
 $Irs after = \frac{8+5}{155 \text{ K}} = 1 \text{ ma} -2$
 $V_{+} \ln \frac{10}{10000} = \Delta V = .012$
 $V_{-} \ln \frac{10}{10000} = \Delta V = .012$
 $075 V$